Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37648599

RESUMO

INTRODUCTION: The usage of immersive virtual reality (iVR) in the context of an intensive care unit (ICU) is scarce. Our objective was to assess the feasibility of the usage of iVR in critical patients with or without mechanical ventilation (MV) and to determine the anxiety degree before and after each session. METHODS: Analytical, descriptive, prospective, and cross-sectional research. Pilot test with 20 patients from a polyvalent ICU of a tertiary hospital. Adult patients were included, either connected or not to MV, watchful and calmed (RASS -1/+1) and without delirium (negative CAM-ICU). Oculus Go (Facebook Technologies, LLC) iVR glasses were the model used. The relaxation strategy consisted in the visualization of an experience of 15 min with scenes related to nature and fantasy, relaxing music with a plot. The sessions were individual, with the patient monitored in a fowler position or seated. The anxiety degree before and after each session was evaluated following a reduced version of the Spanish "Cuestionario de Ansiedad Estado-Rasgo (STAI-e)" and they were analysed using T samples coupled (statistical significance when p-value was <0.05). RESULTS: Incorporation of 20 patients with an average age of 63.9 years old (60% men). A total of 34 sessions of iVR were conducted. 32% patients mechanically ventilated, 32% high-flow oxygen therapy, 36% other breathing supports. 80% of the sessions were completed without serious side effects. A significant decrease in the anxiety degree was observed after each iVR session: first session mean change -2.68 (SD = 2.75), p = 0.000; second session mean change -1.86 (SD = 1.57), p = 0.021; third session mean change -1.67 (SD = 1.63), p = 0.054. CONCLUSION: The usage of iVR in the context of an ICU is feasible, even with patients mechanically ventilated. iVR reduces the anxiety degree in the critic patient, which suggests that "digital therapies" can be effective to improve the emotional state during their stay in the ICU.

2.
Mov Disord ; 38(11): 2064-2071, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37551021

RESUMO

BACKGROUND: Epigenetic clocks using DNA methylation (DNAm) to estimate biological age have become popular tools in the study of neurodegenerative diseases. Notably, several recent reports have shown a strikingly similar inverse relationship between accelerated biological aging, as measured by DNAm, and the age of onset of several neurodegenerative disorders, including Parkinson's disease (PD). Common to all of these studies is that they were performed without control subjects and using the exact same measure of accelerated aging: DNAm age minus chronological age. OBJECTIVE: We aimed to assess the validity of these findings in PD, using the same dataset as in the original study, blood DNAm data from the Parkinson's Progression Markers Initiative cohort, but also including control samples in the analyses. METHODS: We replicated the analyses and findings of the previous study and then reanalyzed the dataset incorporating control samples to account for underlying age-related biases. RESULTS: Our reanalysis shows that there is no correlation between age of onset and DNAm age acceleration. Conversely, there is a pattern of overestimating DNAm age in younger and underestimating DNAm age in older individuals in the dataset that entirely explains the previously reported association. CONCLUSIONS: Our findings refute the previously reported inverse relationship between DNAm age acceleration and age of onset in PD. We show that these findings are fully accounted for by an expected over/underestimation of DNAm age in younger/older individuals. Furthermore, this effect is likely to be responsible for nearly identical findings reported in other neurodegenerative diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Metilação de DNA , Doença de Parkinson , Humanos , Idoso , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Epigênese Genética , Idade de Início , Envelhecimento/genética
3.
Int J Biochem Cell Biol ; 162: 106453, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499270

RESUMO

Phosphodiesterase type 4 (PDE4) enzymes specifically hydrolyse cAMP in many cell signalling systems that are transduced by hormones and other primary messengers. The physiological function of the four PDE4 subfamilies (A, B, C and D) are numerous and varied due to the differentially localised plethora of isoforms that can be detected in cardiovascular, CNS and immune systems. Of the four subfamilies, least is known about PDE4C probably due to its restricted distribution pattern, scarcity of selective inhibitors and the lack of developed research tools. Here, for the first time, we chart the discovery of PDE4C, describe its regulation and highlight cancers where future development of PDE4C selective small molecules may have potential.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Neoplasias , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pulmão
4.
Genome Med ; 15(1): 41, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287013

RESUMO

BACKGROUND: Variation in cell composition can dramatically impact analyses in bulk tissue samples. A commonly employed approach to mitigate this issue is to adjust statistical models using estimates of cell abundance derived directly from omics data. While an arsenal of estimation methods exists, the applicability of these methods to brain tissue data and whether or not cell estimates can sufficiently account for confounding cellular composition has not been adequately assessed. METHODS: We assessed the correspondence between different estimation methods based on transcriptomic (RNA sequencing, RNA-seq) and epigenomic (DNA methylation and histone acetylation) data from brain tissue samples of 49 individuals. We further evaluated the impact of different estimation approaches on the analysis of H3K27 acetylation chromatin immunoprecipitation sequencing (ChIP-seq) data from entorhinal cortex of individuals with Alzheimer's disease and controls. RESULTS: We show that even closely adjacent tissue samples from the same Brodmann area vary greatly in their cell composition. Comparison across different estimation methods indicates that while different estimation methods applied to the same data produce highly similar outcomes, there is a surprisingly low concordance between estimates based on different omics data modalities. Alarmingly, we show that cell type estimates may not always sufficiently account for confounding variation in cell composition. CONCLUSIONS: Our work indicates that cell composition estimation or direct quantification in one tissue sample should not be used as a proxy to the cellular composition of another tissue sample from the same brain region of an individual-even if the samples are directly adjacent. The highly similar outcomes observed among vastly different estimation methods, highlight the need for brain benchmark datasets and better validation approaches. Finally, unless validated through complementary experiments, the interpretation of analyses outcomes based on data confounded by cell composition should be done with great caution, and ideally avoided all together.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Metilação de DNA , Encéfalo , Análise de Sequência de RNA/métodos
5.
iScience ; 26(3): 106278, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36936793

RESUMO

Replenishing nicotinamide adenine dinucleotide (NAD) via supplementation of nicotinamide riboside (NR) has been shown to confer neuroprotective effects in models of aging and neurodegenerative diseases, including Parkinson's disease (PD). Although generally considered safe, concerns have been raised that NR supplementation could impact methylation dependent reactions, including DNA methylation, because of increased production and methylation dependent breakdown of nicotinamide (NAM). We investigated the effect of NR supplementation on DNA methylation in a double blinded, placebo-controlled trial of 29 human subjects with PD, in blood cells and muscle tissue. Our results show that NR had no impact on DNA methylation homeostasis, including individuals with common pathogenic mutations in the MTHFR gene known to affect one-carbon metabolism. Pathway and methylation variance analyses indicate that there might be minor regulatory responses to NR. We conclude that short-term therapy with high-dose NR for up to 30 days has no deleterious impact on methylation homeostasis.

6.
iScience ; 26(2): 105925, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36711240

RESUMO

Aberrant proteostasis is thought to be implicated in Parkinson's disease (PD), but patient-derived evidence is scant. We hypothesized that impaired proteostasis is reflected as altered transcriptome-proteome correlation in the PD brain. We integrated transcriptomic and proteomic data from prefrontal cortex of PD patients and young and aged controls to assess RNA-protein correlations across samples. The aged brain showed a genome-wide decrease in mRNA-protein correlation. Genes encoding synaptic vesicle proteins showed negative correlations, likely reflecting spatial separation of mRNA and protein into soma and synapses. PD showed a broader transcriptome-proteome decoupling, consistent with a proteome-wide decline in proteostasis. Genes showing negative correlation in PD were enriched for proteasome subunits, indicating accentuated spatial separation of transcript and protein in PD neurons. In addition, PD showed positive correlations for mitochondrial respiratory chain genes, suggesting a tighter regulation in the face of mitochondrial dysfunction. Our results support the hypothesis that aberrant proteasomal function is implicated in PD pathogenesis.

7.
Sci Rep ; 12(1): 18806, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335115

RESUMO

The methylation of DNA is an environmentally inducible epigenetic mechanism reflecting the short-term ecological and environmental background of populations. Marine invertebrate populations, which spread along a latitudinal cline, are particularly suitable for profiling DNA methylation, due to the heterogenous environmental conditions experienced. We used the MSAP (Methylation Sensitive Amplified Polymorphism) technique to investigate the natural variation in DNA methylation of different female's tissues (muscle, gonads, and gills) and early-stage eggs from five populations of the kelp crab Taliepus dentatus, distributed along a latitudinal cline in the coast of Chile. We assessed whether, (1) the distribution of DNA methylation profiles can be associated with the temporal variability of long term (18 years) climatologies (sea surface temperature, turbidity and productivity) and (2) the epigenetic diversity of eggs is related to the population-level phenotypic variability of several maternal investment traits (egg volume, egg weight, egg lipids and fecundity). The DNA methylation of eggs correlated positively and negatively with the long term variability in productivity and sea surface temperature, respectively. Furthermore, the diversity of DNA methylation of eggs correlated positively with the population-level phenotypic variability of several maternal investment traits, suggesting a key role of epigenetic mechanisms in generating phenotypic variability at population level for this species. We provide evidence of a strong link between the temporal variability of long term climatologies with the epigenetic profiles of key early ontogenetic traits associated with the maternal investment of kelp crabs. These modulating mechanisms can hence contribute early to phenotypic variability at population levels in response to local and past environmental fluctuation.


Assuntos
Braquiúros , Kelp , Animais , Feminino , Braquiúros/genética , Chile , Metilação de DNA , Epigênese Genética , Epigenômica
8.
Mar Pollut Bull ; 184: 114103, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115195

RESUMO

Harmful Algal Blooms (HAB) pose a severe socio-economic problem worldwide. The dinoflagellate species Alexandrium catenella produces potent neurotoxins called saxitoxins (STXs) and its blooms are associated with the human intoxication named Paralytic Shellfish Poisoning (PSP). Knowing where and how these blooms originate is crucial to predict blooms. Most studies in the Chilean Patagonia, were focused on coastal areas, considering that blooms from the adjacent oceanic region are almost non-existent. Using a combination of field studies and modelling approaches, we first evaluated the role of the continental shelf off northern Chilean Patagonia as a source of A. catenella resting cysts, which may act as inoculum for their toxic coastal blooms. This area is characterized by a seasonal upwelling system with positive Ekman pumping during spring-summer, and by the presence of six major submarine canyons. We found out that these submarine canyons increase the vertical advection of bottom waters, and thus, significantly enhance the process of coastal upwelling. This is a previously unreported factor, among those involved in bloom initiation. This finding put this offshore area at high risk of resuspension of resting cysts of A. catenella. Here, we discuss in detail the physical processes promoting this resuspension.


Assuntos
Cistos , Dinoflagelados , Intoxicação por Frutos do Mar , Humanos , Chile , Proliferação Nociva de Algas , Oceanos e Mares
9.
Nucleic Acids Res ; 50(16): 9190-9194, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979955

RESUMO

While most research suggests mitochondrial DNA (mtDNA) harbors low or no methylation, a few studies claim to report evidence of high-level methylation in the mtDNA. The reasons behind these contradictory results are likely to be methodological but remain largely unexplored. Here, we critically reanalyzed a recent study by Patil et al. (2019) reporting extensive methylation in human mtDNA in a non-CpG context. Our analyses refute the original findings and show that these do not reflect the biology of the tested samples, but rather stem from a combination of methodological and technical pitfalls. The authors employ an oversimplified model that defines as methylated all reference positions with methylation proportions above an arbitrary cutoff of 9%. This substantially exacerbates the overestimation of methylated cytosines due to the selective degradation of unmethylated cytosine-rich regions. Additional limitations are the small sample sizes and lack of sample-specific controls for bisulfite conversion efficiency. In conclusion, using the same dataset employed in the original study by Patil et al., we find no evidence supporting the existence of extensive non-CpG methylation in the human mtDNA.


Assuntos
Metilação de DNA , DNA Mitocondrial , Humanos , Ilhas de CpG/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Citosina/metabolismo , Mitocôndrias/genética
10.
Neuronal Signal ; 6(1): NS20210004, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571495

RESUMO

Alzheimer's disease (AD) remains a major cause of morbidity and mortality worldwide, and despite extensive research, only a few drugs are available for management of the disease. One strategy has been to up-regulate cholinergic neurotransmission to improve cognitive function, but this approach has dose-limiting adverse effects. To avoid these adverse effects, new drugs that target specific receptor subtypes of the cholinergic system are needed, and the M1 subtype of muscarinic acetylcholine receptor (M1-mAChR) has been shown to be a good target for this approach. By using several strategies, M1-mAChR ligands have been developed and trialled in preclinical animal models and in human studies, with varying degrees of success. This article reviews the different approaches to targeting the M1-mAChR in AD and discusses the advantages and limitations of these strategies. The factors to consider in targeting the M1-mAChR in AD are also discussed.

11.
Epigenetics ; 17(8): 906-921, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35253628

RESUMO

While DNA methylation is established as a major regulator of gene expression in the nucleus, the existence of mitochondrial DNA (mtDNA) methylation remains controversial. Here, we characterized the mtDNA methylation landscape in the prefrontal cortex of neurological healthy individuals (n=26) and patients with Parkinson's disease (n=27), using a combination of whole-genome bisulphite sequencing (WGBS) and bisulphite-independent methods. Accurate mtDNA mapping from WGBS data required alignment to an mtDNA reference only, to avoid misalignment to nuclear mitochondrial pseudogenes. Once correctly aligned, WGBS data provided ultra-deep mtDNA coverage (16,723 ± 7,711) and revealed overall very low levels of cytosine methylation. The highest methylation levels (5.49 ± 0.97%) were found on CpG position m.545, located in the heavy-strand promoter 1 region. The m.545 methylation was validated using a combination of methylation-sensitive DNA digestion and quantitative PCR analysis. We detected no association between mtDNA methylation profile and Parkinson's disease. Interestingly, m.545 methylation correlated with the levels of mtDNA transcripts, suggesting a putative role in regulating mtDNA gene expression. In addition, we propose a robust framework for methylation analysis of mtDNA from WGBS data, which is less prone to false-positive findings due to misalignment of nuclear mitochondrial pseudogene sequences.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Encéfalo , Ilhas de CpG , Metilação de DNA , DNA Mitocondrial/genética , Humanos , Doença de Parkinson/genética , Análise de Sequência de DNA/métodos , Sulfitos
12.
Cell Metab ; 34(3): 396-407.e6, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235774

RESUMO

We conducted a double-blinded phase I clinical trial to establish whether nicotinamide adenine dinucleotide (NAD) replenishment therapy, via oral intake of nicotinamide riboside (NR), is safe, augments cerebral NAD levels, and impacts cerebral metabolism in Parkinson's disease (PD). Thirty newly diagnosed, treatment-naive patients received 1,000 mg NR or placebo for 30 days. NR treatment was well tolerated and led to a significant, but variable, increase in cerebral NAD levels-measured by 31phosphorous magnetic resonance spectroscopy-and related metabolites in the cerebrospinal fluid. NR recipients showing increased brain NAD levels exhibited altered cerebral metabolism, measured by 18fluoro-deoxyglucose positron emission tomography, and this was associated with mild clinical improvement. NR augmented the NAD metabolome and induced transcriptional upregulation of processes related to mitochondrial, lysosomal, and proteasomal function in blood cells and/or skeletal muscle. Furthermore, NR decreased the levels of inflammatory cytokines in serum and cerebrospinal fluid. Our findings nominate NR as a potential neuroprotective therapy for PD, warranting further investigation in larger trials.


Assuntos
NAD , Doença de Parkinson , Suplementos Nutricionais , Humanos , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Compostos de Piridínio/uso terapêutico
15.
J Mol Cell Cardiol ; 165: 86-102, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999055

RESUMO

Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Animais , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais
16.
Sci Total Environ ; 806(Pt 1): 150435, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583070

RESUMO

Human activities have led to an increase in land use change, with effects on the structure and functioning of ecosystems. The impact of contrasting land uses along river basins on the concentration of colored dissolved organic matter (CDOM) reaching the coastal zone, and its relationship with the carbonate system of the adjacent coastal ocean, is poorly known. To understand the relationship between land use change, CDOM and its influence on the carbonate system, two watersheds with contrasting land uses in southern Chile were studied. The samples were collected at eight stations between river and adjacent coastal areas, during three sampling campaigns in the austral summer and spring. Chemical and biological samples were analyzed in the laboratory according to standard protocols. Landsat 8 satellite images of the study area were used for identification and supervised classification using remote sensing tools. The Yaldad River basin showed 82% of native forest and the Colu River basin around 38% of grassland (agriculture). Low total alkalinity (AT) and Dissolved Inorganic Carbon (DIC), but high CDOM proportions were typically observed in freshwater. A higher CDOM and humic-like compounds concentration was observed along the river-coastal ocean continuum in the Yaldad basin, characterized by a predominance of native forests. In contrast, nutrient concentrations, AT and DIC, were higher in the Colu area. Low CaCO3 saturation state (ΩAr < 2) and even undersaturation conditions were observed at the coastal ocean at Yaldad. A strong negative correlation between AT, DIC and ΩAr with CDOM/fDOM, suggested the influence of terrestrial material on the seawater carbon chemistry. Our results provide robust evidence that land uses in river basins can influence CDOM/fDOM proportion and its influence on the carbonate chemistry of the adjacent coastal, with potential implications for the shellfish farming activity in this region.


Assuntos
Ecossistema , Rios , Carbonatos , Água Doce , Humanos , Oceanos e Mares
17.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34893539

RESUMO

There are currently no treatments that can slow the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). There is, however, a growing body of evidence that activation of the M1 muscarinic acetylcholine receptor (M1-receptor) can not only restore memory loss in AD patients but in preclinical animal models can also slow neurodegenerative disease progression. The generation of an effective medicine targeting the M1-receptor has however been severely hampered by associated cholinergic adverse responses. By using genetically engineered mouse models that express a G protein-biased M1-receptor, we recently established that M1-receptor mediated adverse responses can be minimized by ensuring activating ligands maintain receptor phosphorylation/arrestin-dependent signaling. Here, we use these same genetic models in concert with murine prion disease, a terminal neurodegenerative disease showing key hallmarks of AD, to establish that phosphorylation/arrestin-dependent signaling delivers neuroprotection that both extends normal animal behavior and prolongs the life span of prion-diseased mice. Our data point to an important neuroprotective property inherent to the M1-receptor and indicate that next generation M1-receptor ligands designed to drive receptor phosphorylation/arrestin-dependent signaling would potentially show low adverse responses while delivering neuroprotection that will slow disease progression.


Assuntos
Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptor Muscarínico M1/metabolismo , Animais , Células Cultivadas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Doenças Priônicas/genética , Receptor Muscarínico M1/genética , Transdução de Sinais
18.
Front Cell Dev Biol ; 9: 744777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722525

RESUMO

Given the considerable interest in using stem cells for modeling and treating disease, it is essential to understand what regulates self-renewal and differentiation. Remodeling of mitochondria and metabolism, with the shift from glycolysis to oxidative phosphorylation (OXPHOS), plays a fundamental role in maintaining pluripotency and stem cell fate. It has been suggested that the metabolic "switch" from glycolysis to OXPHOS is germ layer-specific as glycolysis remains active during early ectoderm commitment but is downregulated during the transition to mesoderm and endoderm lineages. How mitochondria adapt during these metabolic changes and whether mitochondria remodeling is tissue specific remain unclear. Here, we address the question of mitochondrial adaptation by examining the differentiation of human pluripotent stem cells to cardiac progenitors and further to differentiated mesodermal derivatives, including functional cardiomyocytes. In contrast to recent findings in neuronal differentiation, we found that mitochondrial content decreases continuously during mesoderm differentiation, despite increased mitochondrial activity and higher levels of ATP-linked respiration. Thus, our work highlights similarities in mitochondrial remodeling during the transition from pluripotent to multipotent state in ectodermal and mesodermal lineages, while at the same time demonstrating cell-lineage-specific adaptations upon further differentiation. Our results improve the understanding of how mitochondrial remodeling and the metabolism interact during mesoderm differentiation and show that it is erroneous to assume that increased OXPHOS activity during differentiation requires a simultaneous expansion of mitochondrial content.

19.
Mol Neurodegener ; 16(1): 31, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947435

RESUMO

BACKGROUND: Parkinson's disease (PD) is a complex, age-related neurodegenerative disorder of largely unknown etiology. PD is strongly associated with mitochondrial respiratory dysfunction, which can lead to epigenetic dysregulation and specifically altered histone acetylation. Nevertheless, and despite the emerging role of epigenetics in age-related brain disorders, the question of whether aberrant histone acetylation is involved in PD remains unresolved. METHODS: We studied fresh-frozen brain tissue from two independent cohorts of individuals with idiopathic PD (n = 28) and neurologically healthy controls (n = 21). We performed comprehensive immunoblotting to identify histone sites with altered acetylation levels in PD, followed by chromatin immunoprecipitation sequencing (ChIP-seq). RNA sequencing data from the same individuals was used to assess the impact of altered histone acetylation on gene expression. RESULTS: Immunoblotting analyses revealed increased acetylation at several histone sites in PD, with the most prominent change observed for H3K27, a marker of active promoters and enhancers. ChIP-seq analysis further indicated that H3K27 hyperacetylation in the PD brain is a genome-wide phenomenon with a strong predilection for genes implicated in the disease, including SNCA, PARK7, PRKN and MAPT. Integration of the ChIP-seq with transcriptomic data from the same individuals revealed that the correlation between promoter H3K27 acetylation and gene expression is attenuated in PD patients, suggesting that H3K27 acetylation may be decoupled from transcription in the PD brain. Strikingly, this decoupling was most pronounced among nuclear-encoded mitochondrial genes, corroborating the notion that impaired crosstalk between the nucleus and mitochondria is involved in the pathogenesis of PD. Our findings independently replicated in the two cohorts. CONCLUSIONS: Our findings strongly suggest that aberrant histone acetylation and altered transcriptional regulation are involved in the pathophysiology of PD. We demonstrate that PD-associated genes are particularly prone to epigenetic dysregulation and identify novel epigenetic signatures associated with the disease.


Assuntos
Química Encefálica , Código das Histonas , Histonas/metabolismo , Doença de Parkinson/genética , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Acetilação , Antiparkinsonianos/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Humanos , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Córtex Pré-Frontal/química , Sirtuína 1/análise , Sirtuína 2/análise , Sirtuína 3/análise
20.
PLoS Genet ; 16(11): e1009182, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137089

RESUMO

Studies of differential gene expression have identified several molecular signatures and pathways associated with Parkinson's disease (PD). The role of isoform switches and differential transcript usage (DTU) remains, however, unexplored. Here, we report the first genome-wide study of DTU in PD. We performed RNA sequencing following ribosomal RNA depletion in prefrontal cortex samples of 49 individuals from two independent case-control cohorts. DTU was assessed using two transcript-count based approaches, implemented in the DRIMSeq and DEXSeq tools. Multiple PD-associated DTU events were detected in each cohort, of which 23 DTU events in 19 genes replicated across both patient cohorts. For several of these, including THEM5, SLC16A1 and BCHE, DTU was predicted to have substantial functional consequences, such as altered subcellular localization or switching to non-protein coding isoforms. Furthermore, genes with PD-associated DTU were enriched in functional pathways previously linked to PD, including reactive oxygen species generation and protein homeostasis. Importantly, the vast majority of genes exhibiting DTU were not differentially expressed at the gene-level and were therefore not identified by conventional differential gene expression analysis. Our findings provide the first insight into the DTU landscape of PD and identify novel disease-associated genes. Moreover, we show that DTU may have important functional consequences in the PD brain, since it is predicted to alter the functional composition of the proteome. Based on these results, we propose that DTU analysis is an essential complement to differential gene expression studies in order to provide a more accurate and complete picture of disease-associated transcriptomic alterations.


Assuntos
Doença de Parkinson/genética , Córtex Pré-Frontal/patologia , Transcriptoma/genética , Estudos de Casos e Controles , Biologia Computacional , Estudo de Associação Genômica Ampla , Humanos , Modelos Genéticos , Doença de Parkinson/patologia , Isoformas de Proteínas/genética , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...